Виды антител и их функции в организме

Сердечно-сосудистые заболевания

Антигены и антитела

Антигены – это вещества, которые несут признаки генетически чужеродной информации и при введении в организм вызывают развитие специфических иммунологических реакций.

Антигенные вещества представляют собой высокомолекулярные соединения, обладающие определенными свойствами: чужеродностью, антигенностью, иммуногенностью, специфичностью и определенной молекулярной массой.

Антигенами могут быть разнообразные вещества белковой природы, а также белки в соединении с липидами и полисахаридами. Антигенными свойствами обладают клетки животного и растительного происхождения, яды животного и растительного происхождения.

Антигенность – это способность антигена вызывать иммунный ответ. Степень иммунного ответа организма на различные антигены неодинакова, т. е. на каждый антиген вырабатывается неодинаковое количество антител.

Специфичность – это особенность строения веществ, по которой антигены отличаются друг от друга. Ее определяет антигенная детерминанта, т. е. небольшой участок молекулы антигена, который соединяется с выработанным на него антителом.

Иммуногенность — это способность создавать иммунитет. Это понятие относится, главным образом, к микробным антигенам, обеспечивающим создание иммунитета к инфекционным болезням.

Антиген, чтобы быть иммуногенным, должен быть чужеродным и иметь достаточно большую молекулярную массу. С увеличением молекулярной массы иммуногенность нарастает. Корпускулярные антигены (бактерии, грибы, эритроциты) более иммуногены, чем растворимые.

Среди растворимых антигенов наибольшей иммуногенность обладают высокомолекулярные соединения.

Антигены подразделяют на полноценные и неполноценные. Полноценные антигены вызывают в организме синтез антител или сенсибилизацию лимфоцитов и вступают с ними в реакцию как in vivo, так и in vitro. Для полноценных антигенов характерна строгая специфичность, т. е. они вызывают в организме выработку только специфических антител, вступающих в реакцию только с данным антигеном.

Неполноценные антигены (гаптены) представляют собой сложные углеводы, липиды и другие вещества, не способные вызвать образование антител в организме, но вступающие с ними в специфическую реакцию. Добавление к гаптенам небольшого количества белка придает им свойства полноценного антигена.

Если рассматривать антигенные свойства микроорганизма, то можно отметить, что антигенный состав – это достаточно постоянная характеристика любого микроорганизма.

В антигеном комплексе чаще всего встречаются общеродовые антигены (общие для представителей данного рода), группоспецифические (присущие определенной группе), видоспецифические (присущие всем особям данного вида), и штаммоспецифические.

По локализации антигены могут быть поверхностные (К-антигены – антигены клеточной стенки), соматические (О-антигены, локализованы во внутреннем слое клеточной стенки, термостабильны) и жгутиковые (Н-антигены, присутствуют у всех подвижных бактерий, термолабильны). Многие из них активно секретируются клеткой в окружающую среду. В тоже время, существуют гидрофобные антигены, прочно связанные с клеточной стенкой.

Кроме того, патогенные микроорганизмы способны выделять ряд экзотоксинов. Экзотоксины обладают свойствами полноценных антигенов с выраженной неоднородностью в пределах рода и вида. Споры бактериальной клетки также обладают антигенными свойствами: они содержат антиген, общий для вегетативной клетки и споры.

Патогенные микроорганизмы ведут постоянную борьбу с иммунной системой путем изменения структуры поверхностных антигенов. Изменения чаще всего появляются в результате точечных мутаций, в результате появляются варианты существующих антигенов.

Антитела

Виды антител и их функции в организме

В процессе эволюции организмы выработали набор защитных приспособлений к патогенным микроорганизмам, включающие неспецифические механизмы, препятствующие проникновению патогенов, вещества неспецифически повреждающие их (лизоцим, комплемент), фагоцитоз и другие клеточные реакции. Вместе с тем, патогенные микроорганизмы тоже научились преодолевать неспецифические барьеры.

Антитела – белки, относящиеся к иммуноглобулинам, которые синтезируются лимфоидными и плазматическими клетками в ответ на попадание в организм антигена, обладающими способностью специфически связываться с ним. Антитела составляют более 30% белков сыворотки крови, обеспечивают специфичность гуморального иммунитета благодаря способности связываться только с тем антигеном, который стимулировал их синтез.

Первоначально антитела условно классифицировали по их функциональным свойствам на нейтрализующие, лизирующие и коагулирующие. К нейтрализующим были отнесены антитоксины, антиферменты и вируснейтрализующие лизины.

С учетом функциональной способности антител были даны названия серологическим реакциям: агглютинация, гемолиз, лизис, преципитация и др.

В соответствии с Международной классификацией сывороточные белки, несущие функцию антител, получили название иммуноглобулинов (Ig). В зависимости от физикохимических и биологических свойств различают иммуноглобулины классов IgM, IgG, IgA, IgE, IgD.

Иммуноглобулины – белки с четвертичной структурой, т. е. их молекулы построены из нескольких полипептидных цепей.

Молекула каждого класса состоит из четырех полипептидных цепей – двух тяжелых и двух легких, связанных между собой дисульфидными мостиками. Легкие цепи – структура общая для всех классов иммуноглобулинов.

Виды антител и их функции в организме

Тяжелые цепи имеют характерные структурные особенности, присущие определенному классу, подклассу.

Антитела, входящие в определенные классы иммуноглобулинов, обладают различными физическими химическими, биологическими и антигенными свойствами.

Иммуноглобулины содержат три вида антигенных детерминант: изотипические (одинаковые для каждого представителя данного вида), аллотипические (детерминанты, различные у представителей данного вида) и идиотипические (детерминанты, определяющие индивидуальность данного иммуноглобулина и являющиеся различными у антител одного класса, подкласса). Все указанные антигенные различия определяются с помощью специфических сывороток.

Синтез и динамика образования антител

Механизм синтеза антител аналогичен синтезу любых белков и происходит на рибосомах. Легкие и тяжелые цепи синтезируются отдельно, затем соединяются на полирибосомах, а окончательная их сборка происходит в пластинчатом комплексе.

Динамика образования антител. При первичном иммунном ответе в антителообразовании различают две фазы: индуктивную (латентную) и продуктивную. Индуктивная фаза – это период от момента парентерального введения антигена до появления антигенреактивных клеток (продолжительность не более суток).

Антигены

В эту фазу происходит пролиферация и дифференцировка лимфоидных клеток в направлении синтеза IgM. Вслед за индуктивной фазой наступает продуктивная фаза антителообразования.

В этот период, примерно до 10…15 суток уровень антител резко возрастает, при этом уменьшается число клеток, синтезирующих IgM, и нарастает продукция IgA.

Феномен взаимодействия антиген-антитело.

Знание механизмов взаимодействия антигенов и антител раскрывает сущность многообразных иммунологических процессов и реакций, возникающих в организме под влиянием патогенных и непатогенных факторов.

Реакция между антителом и антигеном протекает в две стадии:

  •  специфическая — непосредственное соединение активного центра антитела с антигенной детерминантой.
  • неспецифическая – вторая стадия, когда, отличающийся плохой растворимостью иммунный комплекс выпадает в осадок.

Эта стадия возможна в присутствии раствора электролита и визуально проявляется по разному, в зависимости от физического состояния антигена. Если антигены корпускулярные, то имеет место феномен агглютинации (склеивания различных частиц и клеток).

Образующиеся конгломераты выпадают в осадок, при этом клетки морфологически не изменяются, теряя подвижность, они остаются живыми.

Антигены — это любые вещества, содержащиеся в микроорганизмах и других клетках (или выделяемые ими), которые несут в себе признаки генетически чужеродной информации и которые потенциально могут быть распознаны иммунной системой организма. При введении во внутреннюю среду организма эти генетически чужеродные вещества способны вызывать иммунный ответ различных типов.

Каждый микроорганизм, как бы примитивно он ни был устроен, содержит несколько антигенов. Чем сложнее его структура, тем больше антигенов можно обнаружить в его составе. 

Антигенными свойствами обладают различные элементы микроорганизма — жгутики, капсула, клеточная стенка, цитоплазматическая мембрана, рибосомы и другие компоненты цитоплазмы, а также различные продукты белковой природы, выделяемые бактериями во внешнюю среду, в том числе токсины и ферменты. 

Различают экзогенные антигены (поступающие в организм извне) и эндогенные антигены (аутоантигены — продукты собственных клеток организма), а также антигены, вызывающие аллергические реакции, — аллергены.

В ответ на попадание антигенов в организм начинается целый комплекс реакций, направленный на освобождение внутренней среды организма от продуктов чужеродной генетической информации. Такая совокупность защитных реакций иммунной системы называется 

иммунным ответом

.

Как узнать чужого

Иммунная система — это система охраны организма от внешних вторжений, например, паразитов (о том, как она работает, подробно рассказано в статье «Иммунитет: борьба с чужими и… своими» [2]). Для того, чтобы быстро обнаружить нарушителя порядка, необходимы дозорные — молекулы, которые смогут его распознать и отличить от собственных клеток.

Если у группы паразитов есть какой-нибудь общий и неизменный отличительный признак, это существенно упрощает задачу. Примером могут служить бактерии, чьи жгутики по строению принципиально отличаются от эукариотических: они состоят из белка флагеллина, который в нашем организме не встречается. В таком случае нам достаточно иметь всего одну молекулу, распознающую флагеллин, и она будет сигнализировать о присутствии любой бактерии со жгутиком.

Молекулы-отличительные признаки, подобные флагеллину, называют РАМР — pathogen-associated molecular patterns, что на русский часто переводят как «образ патогенности». Для них в организме человека существуют отдельные рецепторы (TLR (Toll-подобные рецепторы), лектины и т.д.), плавающие в крови или расположенные на клетках иммунной системы. Распознавание РАМР можно отнести к реакциям врожденного иммунитета — оно у всех людей одинаково и не требует дополнительного регулирования .

Но что делать, если в организм попал паразит без РАМР? Или даже не весь паразит целиком, а отдельные его части или продукты обмена? Нужно создать систему, которая не будет заточена на узнавание набора молекул, а сможет точечно опознать практически любую незнакомую молекулу и запустить иммунные реакции. Такую молекулу, которая может вызвать в организме иммунный ответ, называют антигеном.

Антигеном может стать далеко не любая молекула. Для того чтобы иммунитет на нее отреагировал, должны выполняться два важных условия. Первое — чужеродность. Молекула должна быть незнакомой, то есть непохожей на собственные молекулы организма. Пусть у нас есть белок — последовательность аминокислот. В опухолевой клетке белок мутирует, и аминокислоты заменяются на другие.

Аминокислоты, распознаваемые антителом, могут находиться как друг за другом, так и в разных участках белка. Последовательно расположенные аминокислоты образуют линейный антиген. Если же аминокислоты расположены далеко, то они могут сближаться, так как белки находятся, как правило, в свернутом состоянии (так называемые вторичная и третичная структуры). При этом возникает конформационный антиген (рис. 1).

Линейные и конформационные антигены

Рисунок 1. Линейные и конформационные антигены. Конформационные антигены доступны для связывания только в интактном белке; при денатурации они исчезают. Линейные антигены присутствуют в любом белке, но денатурация делает некоторые из них доступными.

Immunogenicity and antigenicity

Чужеродность зависит еще и от того, с какими собственными молекулами иммунная система встречалась раньше [2]. Если, например, какой-нибудь белок находится в глазном яблоке, где нет кровеносных сосудов, то у иммунной системы нет возможности с ним познакомиться и узнать, что он свой. При повреждении глазного яблока белок может попасть в кровоток, и тогда иммунная система распознает его как чужой.

Второе условие, необходимое, чтобы молекула стала антигеном, — иммуногенность (рис. 2). Иными словами — иммунная система должна иметь возможность встретиться с молекулой и ее распознать. Поэтому, например, антигенами не могут быть мел или масло — они просто не растворяются в воде. Еще антигеном не может быть очень маленькая молекула, например, отдельно взятая аминокислота — ее сложно уловить в растворе, она не свяжется прочно с антителом.

Напротив, большие молекулы хорошо вызывают иммунный ответ: чем длиннее молекула, тем больше в ней участков, которые можно узнать — эпитопов. Также иммуногенность зависит от жесткости структуры — если молекула будет постоянно изменять структуру, то не получится уловить конкретный эпитоп. Поэтому, например, желатин (длинные нити) практически не вызывает иммунный ответ, если его искусственно не стабилизировать.

Наконец, чтобы обладать иммуногенностью, антиген должен напоминать по структуре собственные молекулы организма. Это связано с тем, что клетки иммунной системы периодически поглощают антигены, расщепляют их и «демонстрируют» друг другу (см. ниже). А чтобы антиген было легко переварить, он должен быть похож по структуре на собственные молекулы или на молекулы, которыми питается организм, — для них в клетках есть расщепляющие ферменты.

От чего зависит иммуногенность антигена?

Рисунок 2. От чего зависит иммуногенность антигена? Каждое антитело специфично к одному эпитопу и может реагировать на близкие к нему по строению эпитопы. Чем больше эпитопов на молекуле и чем выше их разнообразие, тем сильнее иммунный ответ на антиген.

Immunology L4 antigens and antigen receptors

Итак, чтобы сигнализировать о патогене, необходима молекула, распознающая небольшие отличия в белках и углеводах и активирующая клетки иммунной системы. Такими молекулами служат антитела, или иммуноглобулины (Ig).

Классификация иммуноглобулинов

Иммуноглобулины (Ig) различаются по структуре и по выполняемым функциям. У человека обнаружены 5 различных классов иммуноглобулинов:  IgG, IgA, IgM, IgE, IgD, часть из которых ещё подразделяется на подклассы. Подклассы есть у иммуноглобулинов классов G (Gl, G2, G3, G4), А (А1, А2) и M (M1, M2). 

Классы и подклассы, вместе взятые, называют изотипами иммуноглобулинов. 

Антитела разных классов различаются по размерам молекул, заряду белковой молекулы, аминокислотному составу и содержанию углеводного компонента.  Наиболее изученным классом антител является IgG.

В сыворотке крови человека в норме преобладают иммуноглобулины класса IgG. Они составляют приблизительно 70–80% от общего количества сывороточных антител. Содержание IgA — 10-15%, IgM — 5-10%. Содержание иммуноглобулинов класса IgE и IgD очень мало  — около 0.1% для каждого из этих классов.

Иммуноглобулины классифицируют по типу H-цепей (тяжелых цепей). Постоянные области тяжелых цепей у иммуноглобулинов разных классов неодинаковы. Иммуноглобулины человека поделены на 5 классов и ряд подклассов, по типам тяжелых цепей, которые входят в их состав. Эти классы получили название IgA, IgG, IgM, IgD и IgE.

Сами Н-цепи обозначены греческой буквой, соответствующей большой латинской букве названия одного из иммуноглобулинов. У IgA тяжелые цепи α (альфа), IgM – μ (мю), IgG – γ (гамма), IgE – ε (эпсилон), IgD – δ (дельта).  

У иммуноглобулинов IgG, IgM и IgA имеется ряд подклассов. Разделение на подклассы (субтипы) также происходит в зависимости от особенностей Н-цепей. У человека существует 4 подкласса IgG: IgG1, IgG2, IgG3 и IgG4, содержащие тяжелые цепи γ1, γ2, γ3 и γ4 соответственно. Эти H-цепи отличаются небольшими деталями Fc-фрагмента. Для μ-цепи известны 2 подтипа— μ1- и μ2-.  IgA имеет 2 подкласса: IgA1 и IgA2 с α1- и α2-подтипами α-цепей.

В каждой молекуле иммуноrлобулина все тяжелые цепи относяrся к одинаковому типу, в соответствии с классом или подклассом.

Все 5 классов иммуноглобулинов состоят из тяжелых и легких цепей.

Легкие цепи (L-цепи) у иммуноглобулинов разных классов одни и те же. У всех иммуноглобулинов легкие цепи могут быть или обе κ (каппа) или обе λ (лямбда). Иммуноглобулины всех классов разделяют на К- и L-типы, в зависимости от присутствия в составе их молекул легких цепей κ- или λ-типов, соответственно.  У человека соотношение K- и L-типов составляет 3:2.

Классы и подклассы, вместе взятые, называют изотипами иммуноглобулинов. Изотип антител (класс, подкласс иммуноглобулинов – IgM1, IgM2, IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, IgD, IgE) определяется C-доменами тяжелых цепей.

Каждый класс включает огромное множество индивидуальных иммуноглобулинов, различающихся по первичной структуре вариабельных областей; общее число иммуноглобулинов всех классов равно ≈ 10^7.

Схемы строения иммуноглобулинов. (А) — мономерные IgG, IgE, IgD, IgA; (Б) — полимерный секреторный Ig A (slgA) и  IgM (В); (1) — секреторный компонент; (2) — соединительная J-цепь.

Первоначально антитела условно классифицировали по их функциональным свойствам на нейтрализующие, лизирующие и коагулирующие. К нейтрализующим были отнесены антитоксины, антиферменты и вирус-нейтрализующие лизины. К коагулирующим – агглютинины и преципитины; к лизирующим – гемолитические и комплемент-связывающие антитела. С учетом функциональной способности антител были даны названия серологическим реакциям: агглютинация, гемолиз, лизис, преципитация и др.

Антитела (иммуноглобулины, ИГ, Ig) — особый класс гликопротеинов, присутствующих на поверхности B-лимфоцитов в виде мембраносвязанных рецепторов и в сыворотке крови и тканевой жидкости в виде растворимых молекул, и обладающих способностью очень избирательно связываться с конкретными видами молекул, которые в связи с этим называютантигенами.

Виды антител и их функции в организме

Антитела являются важнейшим фактором специфического гуморального иммунитета. Антитела используются иммунной системой для идентификации и нейтрализации чужеродных объектов — например, бактерий и вирусов. Антитела выполняют две функции: антиген-связывающую и эффекторную (вызывают тот или иной иммунный ответ, например, запускают классическую схему активации комплемента).

Антитела синтезируются плазматическими клетками, которыми становятся некоторые В-лимфоциты, в ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом — характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

Антитела представляют собой белки глобулиновой природы (иммуноглобулины) образующиеся в организме под воздействием антигена и обладающие способностью избирательно связываться с ним. Существуют пять разновидностей молекул (классов) иммуноглобулинов с молекулярной массой от 150 до 900 тыс. дальтон: IgM, lgG, IgA, IgE, IgD.

Молекулы иммуноглобулинов состоят из двух легких (L) и двух тяжелых (Н) полипептидных цепей, соединенных между собой дисульфидными связями . Оба типа цепей, соединенных между собой, обладают антигенностью. У тяжелых цепей она специфична для каждого класса иммуноглобулинов и соответственно классам Н-цепи обозначаются m , g , a , e , s .

вариабельных (VL) и константных (CL). Тяжелые цепи включают в себя один вариабельный ( V Н) и 3 константных участка (CH 1 , CH 2 , СН 3 ). Вариабельные участки легких и тяжелых цепей формируют активные центры антител (VL -VH). Участок CL — CH 1 определяет небольшие различия в последовательности расположения аминокислот у индивидуумов одного и того же вида (аллоантигенные различия молекул IgM).

Область CH 2 -CH 2 участвует в фиксации и активации комплемента, а область СН 3 -СН 3 — в фиксации антитела к клеткам (лимфоцитам, макрофагам, тучным клеткам). Данный тип строения молекулы характерен и для всех остальных классов иммуноглобулинов, различия заключаются в дополнительной организации этой основной единицы.

Так, Н-цепь IgM состоит не из 4, а из 5 доменов, а вся молекула IgM представляет собой пентамер молекулы IgG, соединенный дополнительными полипептидными J-цепями. IgA может быть в форме мономеров, димеров и секреторного IgA. Последние две формы имеют дополнительные (димеры) J или J и S цепи (секреторный). Другие свойства антител представлены в таблице 5.

Таблица 5.

Основные характеристики иммуноглобулинов человека

Как устроено антитело

Антитела — это растворимые белки, которые производят В-лимфоциты. У незрелых или покоящихся В-клеток на мембране закреплен предшественник антитела — В-клеточный рецептор, посредством которого В-клетка определяет присутствие антигена. И антитела, и В-клеточные рецепторы построены по одному принципу (рис. 3).

Это белки, которые состоят из четырех аминокислотных последовательностей (цепей): двух тяжелых (H-цепи) и двух легких (L-цепи), прочно соединенных дисульфидными связями попарно и между парами. Два конца тяжелых цепей образуют константную часть; она не создает разнообразия и бывает всего нескольких типов.

  • IgM образует пентамеры (пять антител, соединенных константными частями); может уловить сразу несколько одинаковых молекул антигена и нейтрализовать их, поэтому его больше всего на ранних стадиях иммунного ответа;
  • IgG не образует пентамеров; он производится на поздних стадиях иммунного ответа, обладает бóльшей специфичностью к антигену и активирует другие иммунные клетки;
  • IgD — его функция до сих пор не до конца ясна; он входит в состав В-клеточного рецептора;
  • IgA преобладает в слизистых оболочках, иногда образует димеры (два соединенных антитела);
  • IgE активирует клетки в стенках сосудов, вызывая отеки; его обычно упоминают в связи с аллергическими реакциями.

С другого конца антител находится вариабельная часть, обеспечивающая их разнообразие. Концы легких и тяжелых цепей образуют две одинаковые ямки — антигенсвязывающие участки. Антитела, несущие одинаковые вариабельные части, составляют один идиотип (и могут связывать один и тот же антиген). Антитела разных идиотипов связывают разные антигены благодаря различию в форме и зарядах антигенсвязывающих участков.

Строение и типы антител

Рисунок 3. Строение и типы антител.1. Схема строения антитела. Две тяжелые цепи находятся внутри молекулы, две легкие — снаружи. Все они сшиты друг с другом дисульфидными мостиками (S-S). 2. Изотипы антител. Они определяются типом константной части. Некоторые изотипы могут образовывать димеры (IgA) и пентамеры (IgM) с помощью соединительной цепи (joining chain).

иллюстрация Елены Беловой по материалам Университета Остина Пии и сайта NextDoorLab

Антитела производят В-лимфоциты (или В-клетки). Каждый В-лимфоцит синтезирует свой идиотип антитела. Всего в нашем организме существует около миллиона типов В-клеток. У каждого человека этот миллион немного разный: это зависит не только от отличий в генах иммуноглобулинов, но и от того, как антитело формируется и какие антитела отбирает для себя организм (подробнее об этом можно прочитать в статье «Анализ индивидуальных репертуаров Т-клеточных рецепторов» [6]).

Как добиться разнообразия

В геноме человека содержится несколько кластеров генов, кодирующих иммуноглобулины, — по одному кластеру для каждой цепи (тяжелой и легкой). Цепи состоят из следующих частей: константная (неизменная), вариабельная (V — variable) и связывающая их (J — joining). В тяжелой цепи между участками V и J есть дополнительная, «разнообразная» часть (D — diversity).

Кластер генов содержит множество сегментов — вариантов V, D и J-частей. Из них каждая молодая В-клетка случайным образом отбирает себе по одному, создавая уникальную последовательность антигенсвязывающих участков. Этот процесс называют рекомбинацией генов иммуноглобулинов, или V(D)J-рекомбинацией (рис. 4).

они связываются случайным образом с одной из RSS между V-сегментами и с другой — между J-сегментами. Последовательности из 7 и 9 нуклеотидов комплементарны друг другу, поэтому образуется шпилька, в середине которой — все промежуточные, ненужные V- и J-сегменты. Ферменты катализируют образование разрывов в ДНК, вырезая шпильку.

При этом два сегмента до и после шпильки соединяются. Таким образом, клетка отрезает «ненужные» части от своей ДНК, оставляя последовательность иммуноглобулина из константной части и по одному V-, D- (в тяжелой цепи) и J-сегменту. Это первый этап, на котором возникает разнообразие. Учитывая, что V- и J-сегментов содержится в геноме по нескольку десятков (а в тяжелой цепи добавляется еще и около десяти D-сегментов), в результате рекомбинации можно образовать тысячи вариантов цепей.

Рекомбинация генов иммуноглобулинов

Рисунок 4. Рекомбинация генов иммуноглобулинов, первый этап. Сегменты в каждой группе обозначены цифрами — V1, V2, V3, J1, J2 и так далее. Нонамер (9 нуклеотидов) и гептамер (7 нуклеотидов) — сигнальные последовательности нуклеотидов, комплементарные друг другу. Их связывание друг с другом позволяет образовать кольцо. Таким образом остаются соединены только один из V- и один из J-сегментов.

иллюстрация Елены Беловой по книге Ярилина А.А. Иммунология («ГЭОТАР-Медиа», 2010)

Второй этап — «неаккуратное» разрезание цепей. Когда ферменты вырезают лишние сегменты, они режут цепи ДНК в случайных местах и неравномерно. Поэтому между сегментами оказывается случайное количество нуклеотидов. Наконец, третий этап — встраивание «лишних» нуклеотидов. Фермент TdT (терминальная дезоксинуклеотидтрансфераза) присоединяет случайные нуклеотиды на конец разрыва. Только после этого сегменты соединяются друг с другом. В результате этих случайных перестроек возможное количество антител достигает 1012—1017.

В-клетка может переключаться с одного изотипа антитела на другой, меняя его константную часть. Происходит это с помощью механизма, похожего на рекомбинацию. Гены, кодирующие константную часть, расположены друг за другом (M, D, G, A, E) и разделены S-последовательностями (от switch — переключение). Следовательно, можно соединить две S-последовательности с образованием шпильки и вырезать то, что между ними.

У развивающейся В-клетки иммуноглобулин изначально относится к классу М и прикреплен к мембране в составе B-клеточного рецептора (BCR). Этот рецептор нужен, чтобы сортировать В-клетки и избирательно активировать только те, чье антитело подходит для борьбы с конкретным патогеном. Только после активации клетка начинает производить антитело и выбрасывать его в окружающую среду.

Таким образом, каждая В-клетка может производить и антитела, и В-клеточные рецепторы одинаковой специфичности. Это две молекулы, очень похожие по строению, но разные по функциям, которые не стоит путать. Кроме того, в организме человека есть и еще одна молекула, похожая по строению на антитело — Т-клеточный рецептор.

Некоторый термины молекулярной биологии

Липиды (от др.-греч. λίπος — жир) — обширная группа довольно разнообразных  природных органических соединений, включающая жиры и жироподобные вещества. Липиды содержатся во всех живых клетках и являются одним из основных компонентов биологических мембран. Они  нерастворимы в воде и хорошо растворимы в органических растворителях. Фосфолипиды — сложные липиды, содержащие в себе высшие жирные кислоты и остаток фосфорной кислоты.

Конформация молекул (от лат. conformatio — форма, построение, расположение) — геометрические формы, которые могут принимать молекулы органических соединений при вращении атомов или групп атомов (заместителей) вокруг простых связей при сохранении неизменными порядка химической связи атомов (химического строения), длины связей и валентных углов.

Аминокислоты — органические соединения (кислоты) особой структуры. В их молекулах одновременно содержатся аминогруппы (NH2) и карбоксильные группы (СООН). Все аминокислоты состоят всегоиз 5 химических элементов: С, H, O, N, S.

Пептиды (греч. πεπτος — питательный) — семейство веществ, молекулы которых построены из двух и более остатков аминокислот, соединённых в цепь пептидными (амидными) связями. Пептиды, последовательность которых длиннее примерно 10-20 аминокислотных остатков, называются полипептидами.

В полипептидной цепи различают N-конец, образованный свободной α-аминогруппой и С-конец, имеющий свободную α-карбоксильную группу. Пептиды пишутся и читаются с N-конца к С-концу— с N-концевой аминокислоты к С-концевой аминокислоте.

Аминокислотные остатки — это мономеры аминокислот, входящих в состав пептидов. Аминокислотный остаток, имеющий свободную аминогруппу, называется N-концевым и пишется слева, а имеющий свободную α-карбоксильную группу — С-концевым и пишется справа. 

Белками обычно называют полипептиды, содержащие примерно от 50 аминокислотных остатков. В качестве синонима термина «белки» также используется термин «протеины» (от греч. protos — первый, важнейший). Молекула любого белка имеет четко определенную, достаточно сложную, трехмерную структуру. 

Аминокислотные остатки в белках принято обозначать с помощью трёх-буквенного или одно-буквенного кода. Трёх-буквенный код представляет собой аббревиатуру от английских названий аминокислот и часто используется в научной литературе.  Одно-буквенный код по большей части не имеет интуитивно понятной связи с названиями аминокислот и используется в биоинформатике для представления последовательности аминокислот в виде текста, удобного для компьютерного анализа.

Пептидный остов. В полипептидной цепи многократно повторяется последовательность атомов -NH-CH-CО-  .Эта последовательность и формирует пептидный остов. Полипептидная цепь состоит из полипептидного остова (скелета), имеющего регулярную, повторяющуюся структуру, и отдельных боковых групп (R-групп).

Пептидные связи соединяют аминокислоты в пептиды. Пептидные связи образуются при взаимодействии α-карбоксильной группы одной аминокислоты и α-аминогруппы от последующей аминокислоты. Пептидные связи очень прочны и самопроизвольно не разрываются при нормальных условиях, существующих в клетках. 

Виды антител и их функции в организме

Многократно повторяющиеся в молекулах пептидов группы атомов —СО—NH—  называются пептидными группами. Пептидная группа обладает жесткой планарной (плоской) структурой. 

Конформация белков — расположение полипептидной цепи в пространстве. Пространственная структура, характерная для молекулы белка, образуется за счет внутримолекулярных взаимодействий. Линейные полипептидные цепи индивидуальных белков за счёт взаимодействия функциональных групп аминокислот приобретают определённую трёхмерную структуру, которая и называется «конформацией белков».

Процесс формирования функционально активной конформации белка носит название фолдинг. Жёсткость пептидной связи уменьшает количество степеней свободы полипептидной цепи, что играет большую роль в процессе фолдинга.

Глобулярные и фибриллярные белки. Изученные к настоящему времени белки можно разделить на два больших класса по способности принимать в растворе определенную геометрическую форму: фибриллярные (вытянyтые в нить) и глобулярные (свернутые в клубок). Полипептидные цепи фибриллярных белков вытянуты, расположены параллельно друг другу и образуют длинные нити или слои. В глобулярных белках полипептидные цепи плотно свернyты в глобулы — компактные структуры сферической формы.

Следует отметить условность деления белков на фибриллярные и глобулярные, так как существует большое число белков с промежуточной структурой.

Первичная структура белка (primary structure of protein) — это линейная последовательность аминокислот, составляющих белок, в полипептидной цепи. Аминокислоты соединены между собой пептидными связями. Последовательность аминокислот записывают, начиная от С-конца молекулы, в направлении к N-концу полипептидной цепочки.

П.с.б — это простейший уровень структурной организации белковой молекулы. Первая П.с.б. была установлена Ф. Сенгером для инсулина (Нобелевская премия за 1958 г.).  

Виды антител и их функции в организме

Вторичная структура белка (secondary structure of protein)— укладка полипептидной цепи белка в результате взаимодействия между близкорасположенными аминокислотами в составе одной и той же пептидной цепочки — между аминокислотами расположенными через считанные остатки друг от друга. 

Вторичная структура белков — это пространственная структура, которая образуется в результате взаимодействий между функциональными группами, входящими в состав пептидного остова. 

Вторичная структура белков обусловлена способностью групп пептидной связи к водородным взаимодействиям—между функциональными группами -С=О и — NH- пептидного остова. При этом пептид стремится принять конформацию с образованием максимального числа водородных связей. Однако возможность их образования ограничивается характером пептидной связи. Поэтому пептидная цепь приобретает не произвольную, а строго определенную конформацию.

Вторичная структура образуется из сегментов полипептидной цепи, которые участвуют в формировании регулярной сетки водородных связей.

Другими словами, под вторичной структурой полипептида понимают конформацию его основной цепи (остова) без учета конформации боковых групп. 

Виды антител и их функции в организме

Полипептидная цепь белка, складываясь под действием водородных связей в компактную форму, может образовывать некоторое количество регулярных структур. Таких структур известно несколько: α (альфа)-спираль , β (бета)-структура (другое название — β-складчатый слой или β-складчатый лист), беспорядочный клубок и поворот.

α -спираль и β-структура являются энергетически наиболее выгодными конформациями, поскольку обе они стабилизированы водородными связями. Кроме того, и α-спираль, и β-структура дополнительно стабилизируются благодаря плотной упаковке атомов основной цепи, которые подогнаны друг к другу, как кусочки одной картинки-головоломки.

Эти фрагменты и их сочетание в некотором белке, если они имеются, также принято называть вторичной структурой этого белка.  

В структуре глобулярных белков могут встречаться фрагменты регулярного строения всех типов в любой комбинации, но может не быть и ни одного. В фибриллярных белках все остатки принадлежат какому-то одному типу: например, шерсть содержит α-спирали, а шелк — β-структуры.

Таким образом, чаще всего вторичная структура белка — это укладка полипептидной цепи белка в α-спиральные участки и β-структурные образования (слои) с участием водородных связей. Если водородные связи образуются между участками изгиба одной цепи, то их называют внутрицепочечными, если между цепями – межцепочечные. Водородные связи располагаются перпендикулярно полипептидной цепи.

α-спираль—образуется внутрицепочечными водородными связями между NH группой одного остатка аминокислоты и CO-группой четвертого от нее остатка. Средняя длина α-спиралей в белках — 10 аминокислотных остатков

В α-спирали водородные связи образуются между атомом кислорода карбонильной группы и водородом амидного азота 4-й от него аминокислоты. В образовании этих водородных связей вовлечены все группы C=O и N-H основной полипептидной цепи. Боковые цепи аминокислотных остатков располагаются по периферии спирали и не участвуют в образовании вторичной структуры.

 β-структуры формируются между линейными областями пептидного остова одной полипептидной цепи, образуя при этом складчатые структуры (несколько зигзагообразных полипептидных цепей). 

β-структура формируется за счет образования множества водородных связей между атомами пептидных групп линейных цепей. В β-структурах водородные связи образуются между относительно удалёнными друг от друга в первичной структуре аминокислотами или разными цепями белка, а не близко расположенными, как имеет место в α-спирали.

В некоторых белках β-структуры могут формироваться за счет образования водородных связей между атомами пептидного остова разных  полипептидных цепей.

Полипептилные цепи или их части могут формировать параллельные или антипараллельные β-структуры. Если связанные несколько цепей полипептида направлены противоположно, а N- и С-концы не совпадают, то возникает антипараллельная β–структура, если совпадают – параллельная β-структура.

Другое название β-структур — β-листы (β-складчатые слои, β-sheets). β-лист формируется из двух или более β-структурных участков полипептидной цепи, называемых β-тяжами (β-strands). Обычно β-листы встречаются в глобулярных белках и содержат не более, чем 6 β-тяжей.

 β-тяжи (β- strands)— это участки молекулы белка, в которых связи пептидного остова нескольких идущих подряд полипептидов организованы в плоской конформации. На иллюстрациях, β-тяжи белков иногда изображаются в виде плоских «лент со стрелками», чтобы подчеркнуть направление полипептидной цепи. 

Основная часть β-тяжей расположена по соседству с другими тяжами и образует с ними обширную систему водородных связей между C=O и N-H группами основной белковой цепи (пептидного остова). β-тяжи могут быть упакованы {amp}lt;in a side-by-side manner{amp}gt;, будучи стабилизированными поперечно двумя или тремя водородными связями между последовательными тяжами. Такой способ укладки и называется β-листом.

Как работает антитело

Допустим, перед нами уже активированная В-клетка, которая производит и выделяет антитела. Куда им отправиться на поиски антигена? Здесь возможно несколько вариантов.

Виды антител и их функции в организме

Растворимые антигены можно встретить свободно плавающими в крови. Это могут быть частички покровов патогена, продукты его обмена веществ или испорченные белки собственного организма — например, мутировавшие, как в случае раковых клеток, или неправильно свернутые. Последствия встречи антитела с растворимым антигеном могут быть разными.

  1. Антитело может заблокировать антиген. Например, если это какой-нибудь токсин, антитело может связаться с его активным центром и помешать ему наносить повреждения организму. Это происходит с токсинами возбудителей разных заболеваний — дифтерии, ботулизма, столбняка.
  2. Комплекс антиген—антитело (иммунный комплекс) запускает работу системы комплемента. Это группа белков, которая вступает в каскад реакций с образованием сигнальных молекул. А они, в свою очередь, расширяют сосуды и привлекают лейкоциты. Поэтому там, где антитело «поймало» антиген, могут развиться отек и воспаление. Если же иммунный комплекс окажется на клетке, то белки комплемента продырявят ее мембрану. Когда комплексов антитело—антиген в организме много, и они плохо выводятся почками, возникает болезнь иммунных комплексов — они скапливаются в мелких сосудах (например, в коже) и вызывают локальные очаги воспаления.
  3. Антитело работает как «черная метка»: большинство клеток иммунной системы умеют узнавать константные части антител. При этом некоторые клетки захватывают (фагоцитируют) иммунные комплексы, а другие — выделяют провоспалительные вещества, привлекая и активируя еще больше клеток. Научное название для такой черной метки — опсонин. Он может подавать сигнал и обычным клеткам. Например, если антитело налипнет на вирусную частицу, а потом эта частица проникнет внутрь клетки организма, внутриклеточные рецепторы распознáют метку. Такая частица будет переварена, и заражения клетки, возможно, удастся избежать.

Поверхностные антигены ждут антитела на мембранах клеток. Это могут быть клетки бактерий или собственные клетки человека, например, пораженные вирусом. В случае бактерий антитела тоже могут блокировать работу антигена (например, если прилипнут к белкам бактериального жгутика, — тогда бактерия не сможет передвигаться) или служить опсонином.

На антитело, связанное с клеткой, снова реагирует комплемент — в результате каскада реакций в мембране образуются сквозные каналы, и клетку буквально превращают в решето. Кроме того, «черная метка» служит сигналом для иммунных клеток, запуская фагоцитоз или выделение токсичных веществ (рис. 5) [8].

Разнообразие функций антител

Рисунок 5. Разнообразие функций антител. Помимо прямой — связывания с мишенью, — антитела обладают также набором других функций. Они активируют комплемент и иммунные клетки, направляя их действие на мишень, а в медицине и молекулярной биологии могут использоваться как специфические транспортеры веществ.

[8]

Гаптены

Гаптены — это «неполноценные антигены» (термин предложен иммунологом К. Ландштейнером). При введении в организм в нормальных условиях гаптены не способны индуцировать в организме иммунный ответ, так как обладают крайне низкой иммуногенностью. 

Чаще всего гаптенами являются низкомолекулярные соединения (молекулярная масса меньше 10 кДа). Они распознаются организмом реципиента как генетически чужеродные (т.е. обладают специфичностью), но в силу низкой молекулярной массы сами по себе не вызывают иммунных реакций. Однако свойство антигенности они не утратили, что позволяет им специфически взаимодействовать с уже готовыми факторами иммунитета (антителами, лимфоцитами).

При определенных условиях удается за­ ставить иммунную систему макроорганизма специфически реагировав на гаптен как на полноценный антиген. Для этого необходимо ис­кусственно укрупнить молекулу гаптена — соединить ее прочной связью с достаточно большой белковой молекулой или другим полимером-носителем. Синтезированный таким образом конъюгат будет обладать всеми свойствами полноценного антигена и вызы­вать иммунный ответ при введении в организм.

Жизнь антител в организме

Теперь соберем весь пазл вместе. Проследим за жизнью В-лимфоцитов и их антител с самого начала. Молодые В-клетки развиваются в красном костном мозге. Там, под действием окружающих клеток соединительной ткани, каждой В-клетке предстоит сформировать свое собственное антитело.

Как мы уже писали выше, В-клетки умеют создавать множество уникальных генов иммуноглобулинов. Но не все эти гены будут рабочими — где-то возникнут поломки из-за многочисленных разрезов и перестроек, где-то итоговый белок не сможет принять правильную структуру. Следующая веха в жизни В-клетки — проверка профпригодности антител.

Сначала В-клетка перестраивает ген тяжелой цепи на одной из двух хромосом. Потом синтезирует соответствующие белковые цепи, собирает из них псевдоантитело (вместо легких цепей в нем суррогатные цепи) и выставляет его на мембрану. Если все прошло успешно, то антитело с поверхности клетки посылает сигнал, блокирующий дальнейшую перестройку тяжелой цепи и программу апоптоза — механизма клеточного самоубийства, при котором клетка расщепляет себя изнутри.

Если псевдоантитело по каким-то причинам собрать не удалось, запускается перестройка генов на второй хромосоме. Если и со второй попытки не удается сделать рабочую цепь, включается программа апоптоза, и клетка гибнет. Если же тяжелая цепь собрана правильно, у клетки есть две попытки сформировать работающую легкую цепь.

После того, как В-лимфоцит собрал свое антитело, он проходит через строгий отбор (селекцию). Цель его — уничтожить клетки, которые реагируют на собственные антигены организма и могут вызвать аутоиммунную реакцию. А таких среди молодых В-лимфоцитов до 75%! Селекция устроена следующим образом: вокруг В-клеток в красном костном мозге сидят поддерживающие клетки, каждая из которых «показывает» В-клеточному рецептору свои антигены.

Каждое связывание В-клеточного рецептора с антигеном посылает в клетку сигнал, стимулирующий апоптоз. В то же время, на поверхности В-клеток есть рецепторы к белкам BAFF и APRIL, которые тоже находятся на поддерживающих клетках. Через рецепторы к BAFF и APRIL поступает сигнал, запрещающий апоптоз. Но этих рецепторов довольно мало.

Поэтому, если В-клетка хорошо связывает антигены на окружающих клетках, то проапоптотических сигналов становится больше, чем противоапоптотических, и клетка погибает. А если она связывает антигены плохо или не связывает вообще, то сигналов от BAFF и APRIL рецепторов достаточно для ее выживания. При условии, что селекция работает нормально, из всего разнообразия В-клеток и их антител выживают только те, которые узнают что-то, отличное от собственных молекул организма (рис. 7).

Схема развития В-клеток

Рисунок 7. Схема развития В-клеток. Прежде чем зрелая В-клетка будет готова синтезировать антитела, она проходит многоэтапную селекцию. Это нужно, чтобы отсеять нерабочие и опасные для организма варианты антител.

иллюстрация Елены Беловой

Молодая В-клетка плавает с током крови по организму до тех пор, пока не встретит свой антиген. В-клеточный рецептор (BCR) связывается с антигеном, но этого недостаточно для активации. Нужно, чтобы иммунная система официально подтвердила — да, этот антиген действительно опасен. Поэтому В-клетка поглощает комплекс ВCR—антиген, разрезает антиген на части и выставляет их на поверхность в составе комплекса МНС-II. Тем самым она сигнализирует о том, что может создать антитело к вот такому антигену.

В это же время по организму путешествуют Т-хелперные лимфоциты, клетки-помощники. У них есть Т-клеточный рецептор, тоже специфичный к конкретному антигену. Для выполнения своих функций Т-хелперам надо активироваться. Это происходит при встрече с антигенпрезентирующей клеткой, несущей в составе MHC-II антиген, подходящий к Т-клеточному рецептору.

Антигенпрезентирующими клетками могут быть как «профессионалы» (дендритные клетки), так и сами В-клетки. Проконтактировав с ними, Т-хелпер получает сигнал тревоги и активируется. Теперь он «знает», что в организме есть такой антиген, и способен активировать В-клетку, если они встретятся. Почему Т-хелпер не может сразу в ответ активировать В-лимфоцит, если он сам выступает в роли антигенпрезентирующей клетки?

Контакт с антигенпрезентирующей клеткой протекает очень быстро, а Т-хелперу требуется время, чтобы синтезировать необходимые для активации вещества, поэтому он просто не успевает это сделать и уходит в поисках других подходящих В-клеток. Долгожданная встреча обычно происходит в лимфатических узлах или более крупных лимфоидных органах — красном костном мозге и селезенке.

Встреча В-клетки и активированного Т-хелпера

Рисунок 8. Схема встречи В-клетки и активированного Т-хелпера. В-клетка связывает антиген с помощью рецептора (BCR), поглощает его и выставляет в составе МНС-II. Активированный Т-хелпер связывается с МНС с помощью молекулы CD4 и узнаёт антиген своим Т-клеточным рецептором (TCR). Затем Т-хелпер выделяет интерлейкины (IL2/4/5), которые связываются с соответствующими рецепторами (ILR) на В-клетке и активируют ее.

[10]

Затем происходит процесс усовершенствования антител — соматический гипермутагенез. В-лимфоцит делится, образуя клон — группу клеток, производящих одинаковые антитела. Клетки клона получают шанс сделать антитело, которое еще лучше связывается с их антигеном, чем предыдущая его версия. При этом клетки случайным образом заменяют нуклеотиды в вариабельных частях гена иммуноглобулина, создавая разнообразные вариации на тему исходного антитела, точнее, его антигенсвязывающей части.

Те из них, которые будут распознавать антиген лучше всего, получат сигнал к делению, и образуют окончательный В-клеточный клон. Все клетки клона способны производить один и тот же идиотип (с одинаковой вариабельной частью), но могут переключаться между изотипами (изменять константные части) в зависимости от условий.

Большинство из клеток клона превращаются в плазматические клетки. Они перестают производить В-клеточный рецептор и начинают выделять полноценные растворимые антитела. Антитела попадают в кровь, разносятся по организму и связываются с антигеном. Где-то они просто его обезвреживают и в составе иммунных комплексов выводятся из организма. Где-то они работают опсонинами («черными метками») и активируют другие клетки иммунной системы.

при первой же встрече с антигеном они начинают производить антитела. Поэтому вторичный иммунный ответ развивается быстрее первичного и работает эффективнее. На этом основан эффект вакцинации — мы знакомим организм с новыми антигенами. Их можно вводить в составе убитого или ослабленного возбудителя заболевания или в виде отдельных молекул.

Но принцип остается одним — мы вводим в организм антиген, он запускает иммунный ответ. Первичный ответ, как правило, будет слабым, так как антигена немного и он не вредит организму, но при этом формируется пул клеток памяти. И если через какое-то время приходится иметь дело с настоящим живым патогеном, то развивается вторичный ответ.

На измерении количества (титра) антител в крови основана диагностика многих заболеваний. Например, если мы хотим выяснить, есть ли в организме человека какая-нибудь бактерия, можно проверить кровь на антитела к ее ключевым антигенам. По количеству и типу антител мы можем сказать, насколько тяжело протекает заболевание и давно ли оно началось (в первичном ответе сначала участвуют IgM, потом IgG, во вторичном — в основном IgG, и их гораздо больше).

Эпитопы (антигенные детерминанты)

Виды антител и их функции в организме

Эпитопы разнообразны по своей структуре. Антигенной детерминантой (эпитопом) может быть участок поверхности белка, образованный радикалами аминокислот, гаптен или простетическая группа белка (связанный с белком небелковый компонент), особенно часто — полисахаридные группы гликопротеинов. 

Антигенные детерминанты или эпитопы — это определенные участки трехмерной структуры антигенов. Существуют разные типы эпитопов — линейные и конформационные. 

Линейные эпитопы образованы линейной последовательностью аминокислотных остатков. 

В результате изучения строения белков было выяснено, что белковые молекулы имеют сложную пространственную структуру. При свертывании (в клубок) макромолекулы белка могут сближаться остатки, отдаленные друг от друга в линейной последовательности, образуя конформационную антигенную детерминанту. 

Кроме того, сушествуют кон­цевые эпитопы (расположенные на концевых участках молекулы антигена) и центральные. Определяют также «глубинные», или скрытые, антигенные детерминанты, которые проявляются при разрушении антигена.

Молекулы большинства антигенов имеют довольно большие размеры. Одна макромолекула белка (антиген), состоящая из нескольких сот аминокислот, может содержать много различных эпитопов. Некоторые белки могут иметь одну и ту же антигенную детерминанту в нескольких экземплярах (повторные антигенные детерминанты).

BIOCAD

Против одного эпитопа образуется широкий спектр разных антител. Каждый из эпитопов способен стимулировать продукцию различных специфичных антител. К каждому из эпитопов могут вырабатываться специфические антитела.  

Существует явление иммунодоминантности, которое проявляется в том, что эпитопы различают­ся по способности индуцировать иммунный ответ. 

Не все эпитопы в составе белка характеризуются равной антигенностью. Как правило, некоторые эпитопы антигена обладают особой антигенностью, что проявляется в преимущественном образовании антител против этих эпитопов. Устанавливается иерархия в спектре эпитопов молекулы белка  — некоторые из эпитопов являются доминирующими и большинство антител образуется именно к ним. Такие эпитопы названы иммунодоминантными эпитопами.  Они почти всегда расположены на выдающихся частях молекулы антигена.

Какие еще бывают антитела

Можно представить себе антитело как конструктор: изменяя отдельные части молекулы, мы можем влиять на ее функцию. Изменится вариабельная часть — она станет специфична к другому антигену, изменится константная — ее станут узнавать другие иммунные клетки, и она сможет работать в других условиях (например, IgA — в слизистой оболочке).

У птиц репертуар антител менее разнообразен, чем у нас. В частности, у них нет отдельно взятых антител класса G и Е, зато есть промежуточный класс, сочетающий свойства и тех и других — IgY (Y — от yolk, «желток», поскольку этих антител много в яичном желтке). Молекулы IgY чуть тяжелее, чем наши IgG, и более жесткие.

Зато их константную часть могут распознавать рецепторы и к IgG, и к IgЕ [13]. Если мы научимся создавать вакцины на основе куриных антител, то они будут лучше стимулировать иммунный ответ. И использовать их будет просто: берем курицу, заражаем ее каким-то патогеном (или просто его антигеном), а она откладывает нам яйца, богатые IgY, специфичным к этому патогену.

Коровы пошли по пути удлинения антител. В их желудке обнаружены иммуноглобулины М со своеобразной «ручкой» — дополнительным отделом вариабельной части. Каждая «ручка» специфична к своему вирусному антигену. Полагают, что это уникальное изобретение жвачных для защиты пищеварительной системы. В их желудке пища задерживается надолго для переваривания желудочной микрофлорой.

И для защиты этой микрофлоры от патогенов сформировались антитела с ручкой, которые могут дотянуться до эпитопов, спрятанных глубоко внутри молекулы антигена. Можно предположить, что, пришивая такую ручку к нашим иммуноглобулинам, мы сможем повысить их разнообразие, и они начнут связываться с эпитопами, до которых раньше не доставали. Но это пока теоретические размышления, до практических применений должно пройти еще немало времени.

А вот верблюды, сумчатые млекопитающие и хрящевые рыбы используют обратную стратегию — уменьшение антител (рис. 9). Среди их иммуноглобулинов есть фракция молекул, лишенных легких цепей, — их назвали HCAb (heavy chain antibody). Антигенсвязывающий участок у них образован только тяжелой цепью. Это легкое антитело оказалось очень выгодным, не зря оно появлялось в эволюции позвоночных несколько раз независимо.

Функционирование комплексов МНС

С одной стороны, оно легче, поэтому лучше путешествует по организму и выводится почками. С другой стороны, антигенсвязывающий участок меньше, поэтому может проникать, например, в активные центры ферментов. При этом антитело не только опсонизирует фермент, но и блокирует его работу. Это свойство ученые собираются использовать для борьбы против онкологических заболеваний.

Необычные антитела у животных

Рисунок 9. Необычные антитела у животных. Иммуноглобулины верблюда состоят из одних лишь тяжелых цепей (слева) а иммуноглобулин коровы несет дополнительную «ручку» на вариабельной цепи (справа).

Creative Biolabs и [14]

Антитела (иммуноглобулины), структура, классы, функции. Понятие о моноклональных антителах. Гибридомы, получение, применение

АнтителаИммуноглобулины IgG на основании экспериментальных данных. Каждый аминокислотный остаток молекулы белка изображен в виде маленького шарика. Визуализация построена с помощью программы RasMol.

В течение XX века биохимики стремились выяснить, какие варианты иммуноглобулинов существуют и какова структура молекул этих белков. Структура антител устанавливалась в ходе разнообразных экспериментов. В основном они заключались в том, что антитела обрабатывались протеолитическими ферментами (папаином, пепсином), и подвергались алкилированию и восстановлению меркаптоэтанолом.

Затем исследовались свойства полученных фрагментов: определялась их молекулярная масса (хроматографией), четвертичная структура (рентгеноструктурным анализом), способность связываться с антигеном и т.п. Также использовались антитела к данным фрагментам: выяснялось, могут ли антитела к одному типу фрагментов связываться с фрагментами другого типа. На основе полученных данных была построена модель молекулы антител.

Более 100 лет исследований структуры и функций иммуноглобулинов только подчеркнули сложную природу этих белков. В настоящее время, строение молекул иммуноглобулинов человека не описано полностью. Большинство исследователей сконцентрировали свои усилия не на описании структуры этих белков, а на выяснении механизмов, посредством которых антитела взаимодействуют с антигенами.

Несмотря на предполагаемое раз­нообразие иммуноглобулинов, их молекулы удалось классифицировать по структурам, входящим в эти молекулы. Эта классификация основана на том, что иммуноглобулины всех классов построены по общему плану, имеют некое универсальное строение. 

Молекулы иммуноглобулинов — это сложные пространственные образования. Все без исключения антитела принадлежат к одному типу белковых молекул, имеющих глобулярную вторичную структуру, что соответствует их названию — «иммуноглобулины» (вторичная структура белка — это способ укладки в пространстве его полипептидной цепи). Они могут быть мономерами либо полимерами, построенными из нескольких субъединиц.

Легкие и тяжелые полипептидные цепи в составе молекулы Ig имеют определенную структуру. Каждая цепь условно разделена на специфические участки, называемые доменами.

Как легкие, так и тяжелые цепи не представляют собой прямолинейную нить. Внутри каждой цепи через регулярные и примерно равные промежутки по 100—110 аминокислот существуют дисульфидные мостики, которые формируют петли в структуре каждой цепи. Наличие дисульфидных мостиков означает, что каждая петля в пептидных цепях должна формировать компактно сложенный глобулярный домен.

Можно сказать, что молекулы иммуноглобулинов собраны из отдельных доменов, каждый из которых располагается вокруг дисульфидного мостика и гомологичен остальным. 

В каждой из легких цепей молекул антител существуют две внутрицепочечные дисульфидные связи, соответственно каждая легкая цепь имеет по два домена. Число таких связей в тяжелых цепях различно; тяжелые цепи содержат по четыре или пять доменов. Домены разделены несложно организованными отрезками. Наличие таких конфигураций было подтверждено прямыми наблюдениями и с помощью генетического анализа.

Первичная, вторичная, третичная и четвертичная структура иммуноглобулинов

Строение молекулы иммуноглобулина (как и других белков) определяется первичной, вторичной, третичной и четвертичной структурой. Первичная структура -— это последовательность аминокислот, составляющих легкие и тяжелые цепи иммуноглобулинов.  Рентгеноструктурный анализ показал, что легкие и тяжелые цепи иммуноглобулинов состоят из компактных глобулярных доменов (так называемых иммуноглобулиновых доменов). Домены  уложены в характерную третичную структуру, названную иммуноглобулиновой укладкой (immunoglobulin fold). 

Иммуноглобулиновые домены — это области в третичной структуре молекулы Ig, которым свойственна определенная автономия структурной организации. Домены формируются различными отрезками одной и той же полипептидной цепи, свернутыми в «клубки» (глобулы). В глобулу включается примерно 110 аминокислотных остатков.

Домены имеют сходную с друг другом общую структуру и определенные функции. Внутри доменов пептидные фрагменты, входящие в состав домена, образуют компактно уложенную антипараллельную β-складчатую структуру, стабилизированную водородными связями (вторичная структура белка). Участков с α-спиральной конформацией в структуре доменов практически не содержится. 

Вторичная структура каждого из доменов сформирована посредством укладки протяженной полипептидной цепи back and forth upon itself в два антипараллельных β-слоя (β-листа), содержащих несколько β-складок. Каждый β-лист имеет плоскую форму — полипептидные цепи в β-складках почти полностью вытянуты. 

Два β-листа, из которых состоит иммуноглобулиновый домен, уложены в структуру, названную β-сэндвичем («словно два куска хлеба друг на друга»). Структура каждого иммуноглобулинового домена стабилизирована за счет внутридоменной дисульфидной связи — β-листы ковалентно связаны дисульфидной связью между цистеиновыми остатками каждого β-листа. Каждый β-лист состоит из антипараллельных β-тяжей, соединенных петлями различной длины.  

Домены, в свою очередь, связаны между собой продолжением полипептидной цепи, которая продолжается за пределы β-складчатых листов. Имеющиеся между глобулами открытые участки полипептидной цепи особенно чувствительные к протеолитическим ферментам.  

Легкие и тяжелые цепи IgG 

Глобулярные домены пары из легкой и тяжелой цепи взаимодействуют между собой, образуя четвертичную структуру. Благодаря этому формируются функциональные фрагменты, которые позволяют полекуле антитела специфически связывать антиген и, в то же время, выполнять ряд биологических эффекторных функций.

Вариабельные домены легкой и тяжелой цепи (VH и VL) вместе с ближайшими к ним константными доменами (СH1 и CL1) образуют Fab-фрагменты антител (fragment, antigen binding). Участок иммуноглобулина, связывающийся со специфическим антигеном, формируется N-концевыми вариабельными областями легких и тяжелых цепей, т.е. VH — и VL -доменами.

Остальную часть, представленную C-концевыми константными доменами тяжелых цепей, обозначают как Fc-фрагмент (fragment, crystallizable). Fc-фрагмент включает остальные CH -домены, скрепленные дисульфидными связями. В месте соединения Fab- и Fc-фрагментов расположена шарнирная область, позволяющая антиген-связывающим фрагментам разворачиваться для более тесного контакта с антигеном.

Схематическое изображение на плоском рисунке неточно отражает структуру Ig; в действительности вариабельные домены легкой и тяжелой цепей не располагаются параллельно, а тесно, крест-накрест переплетены друг с другом. 

Типичное строение иммуноглобулина удобно рассмотреть на примере молекулы антитела класса IgG. Всего в молекуле IgG 12 доменов — по 4 на тяжелых цепях и по 2 на легких цепях.

В состав каждой легкой цепи входит два домена – один вариабельный (VL , variable domain of the light chain) и один константный (CL, constant domain of the light chain). В состав каждой тяжелой цепи – один вариабельный (VH , variable domain of the heavy chain) и три константных домена (CH 1–3, constant domains of the heavy chain). Примерно четвертую часть тяжелой цепи, включающую N-конец, относят к вариабельной области Н-цепи (VH ), остальная часть ее – это константные области (СН1, СН2, СН3). 

IgG

 Каждая пара вариабельных доменов VH и VL, расположенных в соседних тяжелой и легкой цепях, образует вариабельный фрагмент (Fv, variable fragment). 

Протеолитические ферменты (такие, как папаин или пепсин) расщепляют молекулы иммуноглобулинов на фрагменты. При этом под воздействием разных протеаз можно получить различные продукты. Полученные таким способом фрагменты иммуноглобулинов можно использовать для исследовательских, либо медицинских целей.

Лаборатория BIOCAD

Глобулярная структура иммуноглобулинов и способность ферментов расщеплять эти молекулы на крупные составляющие в строго определенных местах, а не разрушать их до олигопептидов и аминокислот, указывает на чрезвычайную компактность структуры.  

Вторичная структура полипептидных цепей молекулы иммуноглобулина обладает доменным строением. Отдельные участки тяжелых и легких цепей свернуты в глобулы (домены), которые соединены линейными фрагментами. Каждый домен имеет примерно цилиндрическую форму и представляет собой β-складчатую структуру, сформированную из антипараллельных β-складок. В рамках базовой структуры, между C- и V-доменами есть определенная разница, которую можно рассмотреть на примере легкой цепи.

На рисунке схематически изображена укладка одиночной полипептидной цепи белка Бенс-Джонса, содержащей VL и CL домены. Схема построена по данным рентгеноструктурного анализа — метода, который позволяет устанавливать трехмерную структуру белков. На схеме можно видеть сходства и различия между V- и C-доменами.

В верхней части рисунка схематически показана пространственная укладка постоянного (C) и вариабельного (V) доменов легкой цепи молекулы белка. Каждый домен — это цилиндрическая «бочкообразная» (barrel-shaped) структура, в которой участки полипептидной цепи (β-тяжи), идущие в противоположных направлениях (т.е. антипареллельные) упакованы так, что формируют два β-листа, удерживаемых вместе дисульфидной связью.

Каждый из доменов, V- и C-, состоит из двух β-листов (слоев с β-складчатой структурой). Каждый β-лист содержит несколько антипараллельных (идущих в противоположных направлениях) β-тяжей: в С-домене β-листы содержат четыре и три β-тяжа, в V-домене — оба слоя состоят из четырех β-тяжей. На рисунке β-тяжи показаны желтым и зеленым для C-домена и красным и синим для V-домена.

В нижней части рисунка иммуноглобулиновые домены рассмотрены подробнее. В этой половине картинки отображена схема взаимного расположения β-тяжей для V- и C-доменов легкой цепи. Можно яснее рассмотреть создающий итоговую структуру способ укладки их полипептидных цепей при формировании из них β-листов.

Что мы можем сделать с антителами

Современные ученые не отстают от наших младших позвоночных братьев и тоже разрабатывают модифицированные антитела. Можно выделить два крупных направления работы с антителами. Первое — молекулярно-биологическое. Коль скоро антитела умеют специфично связываться с антигенами, можно использовать их как метку.

Второе направление — медицинское [1]. С помощью антител можно не только иммунизировать человека, но и адресно доставлять в его организм вещества. Например, можно взять антитело, специфичное к белку опухоли, и пришить к нему (конъюгировать) токсичное вещество. Таким образом лекарство будет избирательно накапливаться в опухоли.

Антитела, безусловно, являются очень многообещающим конструктором. Однако для того, чтобы их широко применять, нужно научиться их производить в больших количествах. А для того чтобы ими лечить — убедиться в специфичности их действия и отсутствии побочных эффектов. О том, как лаборатории справляются с разработкой и производством антител, читайте в следующих статьях нашего цикла.

  1. Краткая история открытия и применения антител;
  2. Иммунитет: борьба с чужими и… своими;
  3. Иммунологическая Нобелевская премия (2011);
  4. Landsteiner K. The specificity of serological reactions. Courier Corporation, 1990. — 348 p.;
  5. Nanette B. Silverberg, Jonah Licht, Suzanne Friedler, Shika Sethi, Teresita A. Laude. (2002). Nickel Contact Hypersensitivity in Children. Pediatr Dermatol. 19, 110-113;
  6. Анализ индивидуальных репертуаров Т-клеточных рецепторов;
  7. Т-лимфоциты: путешественники и домоседы;
  8. Andreas Lutterotti, Roland Martin. (2008). Getting specific: monoclonal antibodies in multiple sclerosis. The Lancet Neurology. 7, 538-547;
  9. Koichi S. Kobayashi, Peter J. van den Elsen. (2012). NLRC5: a key regulator of MHC class I-dependent immune responses. Nat Rev Immunol. 12, 813-820;
  10. Jonathan C. W. Edwards, Geraldine Cambridge. (2006). B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol. 6, 394-403;
  11. Martin F. Flajnik. (2018). A cold-blooded view of adaptive immunity. Nat Rev Immunol. 18, 438-453;
  12. Необычные животные: иммунологические сказки;
  13. Edzard Spillner, Ingke Braren, Kerstin Greunke, Henning Seismann, Simon Blank, Dion du Plessis. (2012). Avian IgY antibodies and their recombinant equivalents in research, diagnostics and therapy. Biologicals. 40, 313-322;
  14. Melissa L Vadnais, Vaughn V Smider. (2016). Bos taurus ultralong CDR H3 antibodies. Current Opinion in Structural Biology. 38, 62-67;
  15. От рака вылечит… верблюд!;
  16. 12 методов в картинках: иммунологические технологии.

Структура доменов в составе молекул иммуноглобулинов

Пептидные цепи иммуноглобулиновПептидные цепи иммуноглобулинов. Схематическое изображение. Вариабельные области выделены пунктиром.

Структурная единица иммуноглобулина — мономер, молекула состоящая из полипептидных цепей, соединенных друг с другом дисульфидными связями (S—S мостиками). 

Если молекулу Ig обработать 2-меркаптоэтанолом (реактивом, разрушающим дисульфидные связи), то она распадется на пары полипептидных цепей. Полученные полипептидные цепи классифицируют по молекулярной массе: легкие и тяжелые. Лёгкие цепи имеют низкую молекулярную массу (около 23 кД) и обозначаются буквой L, от англ. Light —
 лёгкий. Тяжёлые цепи Н (от англ.
 Heavy — тяжёлый) имеют высокую молекулярную массу (варьирует в пределах 50 — 73 кД).

Так называемый мономерный иммуноглобулин содержит две L-цепи и две H-цепи. Легкие и тяжелые цепи удерживаются вместе дисульфидными мостиками. Дисульфидные связи соединяют легкие цепи с тяжелыми, а также тяжелые цепи между собой. 

Основной структурной субъединицей всех классов иммуноглобулинов является пара «легкая цепь — тяжелая цепь» (L-H). Структура иммуноглобулинов разных классов и подклассов различается по числу и расположению дисульфидных связей между тяжелыми цепями, а также по числу (L-H)-субъединиц в молекуле. Н-цепи скрепляются различным числом дисульфидных связей. Типы тяжелых и легких цепей, входящих в состав разных классов иммуноглобулинов, также различаются.

На рисунке представлена схема организации IgG в качестве типичного иммуноглобулина. Как и все иммуноглобулины, IgG содержит две одинаковые тяжелые (Н) цепи и две одинаковые легкие (L) цепи, которые объединены в четырехцепочечную молекулу посредством межцепьевых дисульфидных связей (-S-S-). Единственная дисульфидная связь, соединяющая Н- и L-цепи, локализуется недалеко от С-конца легкой цепи. Между двумя тяжелыми цепями также есть дисульфидная связь.

Строение молекулы иммуноглобулина (как и других белков) определяется первичной, вторичной, третичной и четвертичной структурой. Первичная структура -— это последовательность аминокислот, составляющих легкие и тяжелые цепи иммуноглобулинов.  Рентгеноструктурный анализ показал, что легкие и тяжелые цепи иммуноглобулинов состоят из компактных глобулярных доменов (так называемых иммуноглобулиновых доменов). Домены  уложены в характерную третичную структуру, названную иммуноглобулиновой укладкой (immunoglobulin fold).

Иммуноглобулиновые домены — это области в третичной структуре молекулы Ig, которым свойственна определенная автономия структурной организации. Домены формируются различными отрезками одной и той же полипептидной цепи, свернутыми в «клубки» (глобулы). В глобулу включается примерно 110 аминокислотных остатков.

Домены имеют сходную с друг другом общую структуру и определенные функции. Внутри доменов пептидные фрагменты, входящие в состав домена, образуют компактно уложенную антипараллельную β-складчатую структуру, стабилизированную водородными связями (вторичная структура белка). Участков с α-спиральной конформацией в структуре доменов практически не содержится.

Вторичная структура каждого из доменов сформирована посредством укладки протяженной полипептидной цепи back and forth upon itself в два антипараллельных β-слоя (β-листа), содержащих несколько β-складок. Каждый β-лист имеет плоскую форму — полипептидные цепи в β-складках почти полностью вытянуты. 

Два β-листа, из которых состоит иммуноглобулиновый домен, уложены в структуру, названную β-сэндвичем («словно два куска хлеба друг на друга»). Структура каждого иммуноглобулинового домена стабилизирована за счет внутридоменной дисульфидной связи — β-листы ковалентно связаны дисульфидной связью между цистеиновыми остатками каждого β-листа. Каждый β-лист состоит из антипараллельных β-тяжей, соединенных петлями различной длины.

Домены, в свою очередь, связаны между собой продолжением полипептидной цепи, которая продолжается за пределы β-складчатых листов. Имеющиеся между глобулами открытые участки полипептидной цепи особенно чувствительные к протеолитическим ферментам.  

Глобулярные домены пары из легкой и тяжелой цепи взаимодействуют между собой, образуя четвертичную структуру. Благодаря этому формируются функциональные фрагменты, которые позволяют полекуле антитела специфически связывать антиген и, в то же время, выполнять ряд биологических эффекторных функций.

Основная разница между V- и C-доменами состоит в том, что V-домен больше и содержит дополнительные β-тяжи, обозначенные, как Cʹ и Cʹʹ.  На рисунке β-тяжи Cʹ и Cʹʹ, имеющиеся у V-доменов, но отсутствующие у C-доменов выделены голубым прямоугольником. Можно видеть, что каждая полипептидная цепь формирует гибкие петли между последовательными β-тяжами при смене направления. В V-домене, гибкие петли, сформированные между некоторыми из β-тяжей, входят в структуру активного центра молекулы иммуноглобулина.

Уровень вариабельности внутри вариабельных доменов распределен неравномерно. Не весь вариабельный домен изменчив по своему аминокислотному составу,  а лишь его малая часть — гипервариабельные области. На их долю приходится около 20 % аминокислотной последовательности V-доменов. 

В структуре цельной молекулы иммуноглобулина VH- и VL-домены объединены. Их гипервариабельные области примыкают друг к другу и создают единый гипервариабельный участок в виде кармана. Это участок, который специфически связывается с антигеном. Гипервариабельные области определяют комплементарность антитела антигену.

Поскольку гипервариабельные участки играют ключевую роль в распознавании и связывании антигена, их еще называют участками, определяющими комплементарность — CDR (Сomplementarity determining regions). В вариабельных доменах тяжелой и легкой цепей выделяют по три CDR (VL CDR1–3, VH CDR1–3). 

Между гипервариабельными областями расположены относительно постоянные участки аминокислотной последовательности, которые называются каркасными участками (framework region, FR). На их долю приходится около 80% аминокислотной последовательности V-доменов. Роль таких участков заключается в поддержании относительно однотипной трехмерной структуры V-доменов, которая необходима для обеспечения аффинного взаимодействия гипервариабельных участков с антигеном.

В последовательности вариабельного домена области 3 гипервариантные области чередуются с 4 относительно инвариантными «каркасными» участками FR1–FR4, 

H1–3 – CDR-петли, входящие в состав цепей.

Таблица 5.

Словарик

Антиген
молекула, которая вызывает в организме иммунный ответ.
Антигенпрезентирующая клетка
клетка, обладающая способностью поглотить антиген извне, выставить его на поверхность в составе комплекса МНС и таким образом показать его Т-лимфоцитам.
Антигенсвязывающий участок
область антитела, отвечающая за непосредственный контакт с антигеном.
Антитело
молекула, обеспечивающая, с одной стороны, связывание антигена, а с другой — взаимодействие с клетками иммунной системы.
Аутоантиген
антиген, встречающийся в собственном организме.
Аллоантиген
чужеродный антиген, не встречающийся в собственном организме.
Аутоиммунные заболевания
заболевания, вызванные атакой иммунной системы на собственные клетки или ткани организма.
Вариабельная часть антитела
участок молекулы, который может различаться у разных антител и позволять им связывать разные антигены.
Вторичный иммунный ответ
реакция иммунной системы на повторную встречу с антигеном; как правило, он гораздо быстрее и сильнее, чем первичный.
В-клеточный рецептор
молекула, с помощью которой незрелая В-клетка распознает антиген; представляет собой антитело, заякоренное в мембране.
В-лимфоцит
клетка иммунной системы, специализирующаяся на производстве антител.
Гаптен
вещество, которое может вызвать иммунный ответ только в связке с носителем.
Идиотип антитела
принадлежность его к клону антител; все антитела клона несут одинаковые антигенсвязывающие участки.
Изотип антитела
принадлежность его к одному из классов (A, D, E, G, M), различающихся константной частью тяжелой цепи.
Иммунный комплекс
соединение антитела и антигена.
Иммуногенность
способность антигена вызывать иммунный ответ.
Иммуноглобулин
альтернативное название антитела.
Клетка памяти
активированный В-лимфоцит, который не производит антитела, но может начать их производить при повторном контакте с антигеном.
Клон
группа В-лимфоцитов, синтезирующих одинаковые антитела.
Константная часть антитела
участок молекулы, который одинаков у всех антител одного изотипа и отвечает за распознавание антитела иммунными клетками.
Конформационный антиген
антиген, образованный далеко расположенными и сближенными частями молекулы.
Линейный антиген
антиген, образованный последовательно расположенными частями молекулы.
Опсонин
«черная метка» иммунной системы, привлекающая иммунные клетки.
Плазматическая клетка
активированный В-лимфоцит, выделяющий антитела.
Протеасома
молекулярная машина, которая отвечает за расщепление внутриклеточных белков.
Селекция
процесс отбора лимфоцитов, которые, с одной стороны, жизнеспособны, а с другой — не реагируют на собственные антигены организма.
Соматический гипермутагенез
процесс внесения случайных изменений в ген иммуноглобулина; некоторые из них могут привести к лучшему связыванию с антигеном.
T-клеточный рецептор
молекула, с помощью которой Т-клетки распознают антиген.
Эпитоп
участок антигена, на который реагирует иммунная система.
MHC
главный комплекс гистосовместимости (major histocompatibility complex); это белки, с помощью которых клетки организма представляют иммунной системе внешние и внутренние антигены.
PAMP
образ патогенности (pathogen-associated molecular pattern); молекулы, часто встречающиеся у патогенных организмов, которые умеют узнавать клетки врожденного иммуниета.
RAG
фермент, отвечающий за перестройку генов иммуноглобулинов.
TdT
фермент, отвечающий за добавление случайных нуклеотидов в процессе перестройки генов иммуноглобулинов.
V(D)J-рекомбинация
процесс перестройки генов иммуноглобулинов, в ходе которого случайным образом соединяются по одному из множества V-, D- и J-сегментов гена.

Вариабельные и постоянные домены

Домены в пептидных цепях отличаются по постоянству аминокислотного состава. Различают вариабельные и постоянные домены (области). Вариабельные домены обозначаются буквой V, от англ. variable — «изменчивый» и называются V-доменами. Постоянные (константные) домены обозначают буквой C, от англ constant — «постоянный» и называют С-доменами.

Иммуноглобулины, продуцируемые разными клонами плазматических клеток, имеют разные по аминокислотной последовательности вариабельные домены. Константные домены сходны или очень близки для каждого изотипа иммуноглобулина. 

Каждый домен обозначают буквой, означающей его принадлежность к легкой или тяжелой цепи, и числом, указывающим его положение. 

Первый домен на легкой и тяжелой цепях всех антител крайне вариабелен по последовательности аминокислот; он обозначается как VL и VH соответственно.

Второй и последующие домены на обеих тяжелых цепях гораздо более постоянны по последовательности аминокислот. Они обозначаются CH или СH1, СH2 и СH3. Иммуноглобулины IgM и IgЕ имеют дополнительный СH4-домен на тяжелой цепи, расположенный за доменом СH3.

Половину легкой цепи, включающую карбоксильный конец, называют константной областью CL, a N-концевую половину легкой цепи – вариабельной областью VL.

С доменом СН2 также связаны цепочки углеводов.  Иммуноглобулины разных классов сильно отличаются по количеству и расположению углеводных групп. Углеводные компоненты иммуноглобулинов имеют сходное строение. Они состоят из постоянного ядра и вариабельной наружной части. Углеводные компоненты влияют на биологические свойства антител.

Гипервариабельные области в составе V-доменов

На границе Fab- и Fc-фрагментов располагается т.наз. «шарнирная область», имеющая гибкую структуру. Она обеспечивает подвижность между двумя Fab-фрагментами Y-образной молекулы антитела. Подвижность фрагментов молекулы антитела друг относительно друга — это  важная структурная характеристика иммуноглобулинов.

Шарнирная область — это участок тяжелой цепи. Шарнирная область содержит дисульфидные связи, соединяющие тяжелые цепи между собой.  У каждого класса иммуноглобулинов шарнирная область имеет свое строение. 

У иммуноглобулинов (возможно, за исключением IgM и IgE) шарнирная область состоит из короткого сегмента аминокислот и обнаруживается между участками СH1 и СH2 тяжелых цепей. Этот сегмент состоит преимущественно из остатков цистеина и пролина. Цистеины вовлечены в формирование дисульфидных мостиков между цепями, а пролиновые остатки предотвращают складывание в глобулярную структуру.

Оцените статью
Медицинский блог